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Abstract

In this paper we investigate the dependence of the fractional frequency stability measures o, (r) and

modo, (v) on the parameter 2af,r for common power-law noise types. Previous investigators have calculated
the value of o,(r) and modo,(r) in the limit that 2xf,7 is either small or large compared to 1. We have
implemented the calculations using numerical techniques which make it possible to perform the calculations
for virtually any value of 2xf,r and a wide variety of high-frequency filters. We find significant
differences for o,(r) dependiug on the filter, when 2xf,+r « 1. The values for o,(r) are nearly independent
of Eilter slope for 2sf,r » 1. Of particular importance is R(n), the ratio of o, (r) to modo (r), as a
function of n, the number of measurements averaged together in the calculations of modo, (r). We find

differences from the values of R(n) versus n given in the literature for both fllcker-p‘ase and flicker-
frequency noise types.

loutroduction

The calculation of fractional frequency stability expressed in terms of the two sample or Allan Variance,

02(r). from frequency domain measures such as the spectral density of frequency fluctuations, S, (f) is well
known (1-3]:

fy .
2 . sin® (xfnr
ol =2 JO S,(f)'z;?ﬁ;:sr‘l df.

Sy (f). for most physical systems used in signal handling, is characterized by random noise vhose power
spectral density varies as a simple power law over wide ranges of Fourier frequencies, f. o, (r) can be
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calculated analytically under the condition that 2xf,r is either very large or very small compared to 1.
Here €, Ls the equivalent noise bandwidth for the time domain characterization and + is the measurement time
{1-4]. When these conditions are not fulfilled there are corrections to o,(r) that are not well known.

Numerjical Jechniques

4

The integral,

£ .
2 L sin'(xfnr,)
o =2 L S (D gy 4

can be treated as an oscillatory integral except in the neighborhood of the origin. ry is the minisun
measurement time. Therefore, the integral is computed using one approximation in the neighborhood of the
origin and a second method away from the origin, that is

2

oy = 1, + 1.

where
I, = ja 2F, (£)df,
[}

fh
1, =j 2F, (£)sin* (xfnry )dE,
a

sin' (xfnr,)
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s, (£
and F(f) = '(Trﬁéo—;’—

with a chosen so that the first integral is taken over n/2 cycles of the sin function, provided r = nr,
is large enough. Othervise it 1s taken over 2/3 of the interval f,. That is, a = minimum (Z%h' ——%———).

Fy (£) = S, ()

1f the function F, grows more slowly than £? at f = 0, then the first integral exists. We assume that
S, (f) grows no more rapidly than £-2, and thus the integrand in this first integral has a removable
singularity and can be computed using a general purpose quadrature routine.




The second integral is oscillatory. 1t can be transformed into canonical form by use of the trigonometric
substitution,

sin' (nfr) = % - % cos(2xfr) + % cos(4nfr),

and can therefore be written as the sum of three integrals,
I = Ipy + 135 4 Iy

Since a is chosen large enough to avoid the singularity at the origin, the first of these three integrals
can be computed with the standard quadrature routine. The remaining two integrals are oscillatory and are
therefore computed using a routine, designed for integrals of the fora [ f(x)sin(wx)dx or J £(x)cos(wx)dx
vhere w can be very large. These integrals may have values of nr, which easily exceed 10* (here nr, :
corresponds to w). Additional details can be found in {4].

The numerical code for S, (f) has the folloving form.

Cf2 4+ Cf ! +Cy+Cf+Cyf?
s, (f) = + Gy,
K(£)M(E)

vhere K(f) is used to describe the offset on S/ (f) due to locking to an external reference characterized by
S,(f) = Cy, and M(f) is used to provide high-frequency filtering. Alternately we can use an infinitely
sharp cut-off, f, to attenuate the high frequency noise. The values of the Cs are stored in an array. The
filter function K(f) must be chosen from the following four functions.

K(f) = 1

l 2
[t &)

K(f) =
K(E) = [[1 . i:_f] [, . é]]'

- (oxd) (md 0 rl)

M(E) = [(1 + ME(L + ME) (1 + MyE) )2, .

where any or all of the M, can be 0.

Results

Figure 1 shows the well known dependence of o, (r) on r for the common noise types when 2xf,r » 1 and an
infinitely sharp filter at f, is used to attenuate the high frequency noise.[1-3] The only difference
between the results shown here, and that obtained for a single low pass filter is that the values for
flicker phase are sbout 10% smaller. These calculations, performed using our numerical techniques, agree to
within 1% with previous work. They serve to verify that the codes are operating correctly.

Figure 2 shows the results of our numerical calculation of o, (r) for @ = 2 (white phase modulation noise) as
a function of measurement time r and three values of f,. The calculations were made using both an
infinitely sharp filter of width f, and a single low pass filter of the form M(f) = (1 + f/fh)’. From the
variations of o, (r) from one f, cturve to the next we can uniquely determine the dependence of o,(r) on f,
and on r in the limits where 2xf,r is either very small or large conmpared to 1. Once the dependence on £,
and r has been determined, the numerical coefficient can be calculated. 1In the limit that 2xf,r is either
very small or large compared to 1 they generally agree to within 1% with those obtained from the analytical
calculations [1-3]. The dependence of o, (r) on r and 2xf,r near 2xf,r = 1 for the two filter shapes has
not, to our knowledge, been investigated before. Figures 3 to 6 show similar results for the other common
noise types. For a single noise type, the slope of o,(r) versus r, averaged over a decade in r, can vary
widely depending on the value of 2xf,r and the type of filter used. The asymptotic expressions of o, (r) for
the various noise types with the infinitely sharp and single low-pass filters are given in Table 1. {1-3})

We have adapted the numerical techniques used to calculate o, (1) to calculate modo,(r) in the limit of an
infinitely sharp filter of width f,.

The mod sigma integral

£y
ﬂ°d0§(n) = —;T;%7E [n jo §¥%§l sin' (xfnry )df +

f, n-1
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is more difficult to approximate because of the sum over k. Large values of n require computation of many
integrals which takes a long time. The sum over k is eliminated by use of the following identity [5,6)



n-1 sind

n 1 2
kgl (n-k)cosfk = - 3 Y3t
2

This identity is derived by looking at the real part of a sum of complex exponentials. Since cos is the
real part of the complex exponential, this transforms the sum into a geometric series. Such a seriss can be
summed explicitly ylelding the final foramula. Application of this identify to the original integral leads
to the following form for the integral:

£ 0
modo? (n) = 2 I S%ifZ:in gnvgnfz it
0

n'wtrg sin®(wry £

This integral can be evaluated in the same way as the o;(n) integral, except that this integrand has a
singularity for integral values of r,f, instead of the single singularity at f = 0, As in the case of the
ol(n) integral, it is necessary to use one routine near the singularities and another routine for those
subintervals in which the integrand is highly oscillatory. 1t is therefore necessary to break up the
interval of integration into f,r, subintervals and sum the values of the integral over each of these smaller
intervals. If £, is large this involves a large number of subintervals. Often, later subintervals
contribute negligibly to the value of the integral. For this reason an estimate of the error produced by
ignoring further contributions is made every few subintervals. If this error is small relative to the
computed value of the integral up to that point, then no further calculation is done and the value returned
by the program as nodag(n) is the sum of the integrations done over the subintervals up to that point.
Additional details can be found in (4].

Rather than show the explicit values of mods, (r), we have chosen to represent the results as

[modoy (1) )2
R(n) = —mmm—
{o,(r))?

This form clearly shows the differences between o,(r) and modo, (r) as a function of noise type. It is
interesting that R(n) shows a dependence on 2xf,r only for flicker phase noise (a = 1) using an infinitely
sharp filter. For flicker phase and flicker frequency noise types the results given in Figure 7 and Table
2 differ somewhat from these given by previous investigators (7,8].

Discussion

Ve believe that this numerical approach to the calculation of both ¢ (r) and modo, (r) will prove to be very
useful. 1t offers more flexibility in the types of noise which can be considered and can easily accommodate
various filter shapes. Such filter shapes can be used to limit the noise bandwidth or define the many types
of servo systems found in modern frequency standards. Using this numerical approach, we have investigated
the dependence of o,(r)and modo, () on measurement time as a function of noise type, the value of 2xf,r, and
filter shape. We have shown that the slope of o, (r) or wodo, (r), which is normally used to identify the
noise type, depends strongly on the value of 2xf,s and the high-frequency filter shape.
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Figure 1.

compared to 1 and an infinitely sharp filter is used.

oy (r) versus r for the five common power-law noise types in the limit that 2«f,r is large

Curve a is for random-walk freq y modulation,

S,(f) = h, £2,

Curve b is for flicker frequency modulation, S,(f) = h., £!. Curve ¢ is for wvhite

Curve e is for

frequency modulation, S, (f) = h,.

Curve d is for flicker phase modulation, S,(f) = h, £,

white phase modulation, S, (f) = h, £2.
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Figure 2.
bandwidth, f, .
= 0.0016 Hz respectively.
respectively.

MEASUREMENT TINE (S) 1

o,(r) for white phase modulation (a = 2) as a function of measurement time, r, and measurement
Curves a, b, and c have an infinitely

sharp filter with vidth, f, = 16 Hz, f, = 0.016 Hz,
Curves d and e have a single pole filter width, £, = 0.016 Hz and f, = 0.0016

£y
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Figure 3. o, (r) for flicker phase frequency modulation (a = 1) as a function of measurement time, r, and
measurement Landvidth. f,. Curves a, b, and ¢ have an infinitely sharp filter with width, f, = 16 Hz, f, =
0.016 Hz, f, = 0.0016 Hz respectively. Curves d and e have a single pole filter width, f, = 0.016 Hz and
f,, = 0.0016 respectively.
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Figure 4. o, (r) for white frequency modulation (a = 0) as a function of measurement time, r, and
measurement bandwidth, f, . Curves a, b, and ¢ have an infinitely sharp filter with width, £, = 16 Hz, f, =

0.016 Hz, f, = 0.0016 Hz respectively. Curves d and e have a single pole filter width, f, = 0.016 Hz and f,
= 0.0016 respectively.
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(r) for flicker frequency modulation (a = -1) as & function of measurement time, r, and

o
measurement Landvldch, f,. Curves a, b, and c have an infinitely sharp filter with width, f, = 16 Hz, f, =
0.016 Hz, f, = 0.0016 Hz respectively. Curves 4 and e have a single pole filter width, £, = 0.016 Hz and £,
= 0.0016 respectively.
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(r) for random walk frequency modulation (a = -2) as & function of measurement time and

o,
measurement glndvldth. £, for ». Curves a, b, and c have an infinitely sharp filter with width, f, = 16 Hz,
f, = 0.016 Hz, £, = 0.0016 Hz respectively. Curves d and e have a single pole filter width, f, = 0.016 Hz
and f, = 0.0016 respectively.
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Figure 7. Ratio of nao::la,(r)2 to c;,(r)z as a function of n, the number of points averaged to obtain
modo, (r). The measurement time r = nry, where ry is the minimum data interval.

TABLE 1. Asymptotic forms of ag(v) for various power-law noise types and two filter types. Note:
w,/2x = f, is the measurement system bandwidth--often called the high-frequency cutoff. In = loge.

Name of Noise a S§,(f) ol(r) .
w, r>>1 wy, r>>1 wy, 1<<1 w, 7<<1
Infinite Sharp Single Pole Infinite Sharp Single Pole
Filter Filter Filter Filter
3f,h, 3f, h, £f,2h,
White Phase 2 h,f? —_— 2/5x2£,%r2n,
(2x)2¢2 (2x)%s2 2r
(1.038 + 3ln(w,r))h;  3ln(w, 7))k, he?f,*r2h,  2£,2(In(2))h,
Flicker Phase 1 h, f
(2r)2r? (2x)2+2
h, h, 2/3%2£,3r2h,  2/3x*f,2th,
White Frequency 0 h
2r 2t
Flicker Frequency -1 h_,f"! 2(1n(2))h_, 2(1n(2))h., x2f,272h_, 8x2f,2r2h_,
222 1h., 2xirh-, 2% f, 12h_, 222 £, 720,

Random-Walk -2 h.,f?
Frequency 3 3




‘ABLE 11. Ratio of lodo;(r) to a}(v) vs n, for common pover-lav noise types S,(f) = hf*. n is the number of
ime or phase samples averaged to obtain -odag(v = nry) vhere ry is the sinimum sample time, and «, is 2 times
he measurement bandwidth f, .

n a= -2 a= -} a=0 a =+ a =42
WTo =3 w1y =10 w7ty =100 @ ry = 10*

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.859 0.738 0.616 0.568 0.543 0.525 0.504 0.500
3 0.840 0.701 0.551 0.481 0.418 0.384 0.355 0.330
4 0.831 0.681 0.530 0.405 0.359 0.317 0.284 0.250
5 0.830 0.684 0.517 0.386 0.324 0.279 0.241 0.200
6 0.828 0.681 0.514 0.349 0.301 0.251 0.214 0.167
7 0.827 0.679 0.507 0.343 0.283 0.235 0.195 0.143
8 0.827 0.678 0.506 0.319 0.271 0.219 0.180 0.12%
10 0.826 0.677 0.504 0.299 0.253 0.203 0.160 0.100
16 0.826 0.675 0.502 0.274 0.230 0.179 0.137 0.0714
20 0.825 0.675 0.501 0.253 0.210 0.163 0.119 0.0500
30 0.825 0.675 0.500 0.233 0.194 0.148 0.106 0.0333
50 0.825 0.675 0.500 0.210 0.176 0.134 0.0938 0.0200
100 0.825 0.675 0.500 0.186 0.159 0.121 0.0837 0.0100

Limit 0.825 0.675 0.500 3.37 /0
1.04 +3 Inayr *




